4 Major Artificial Intelligence Problems You May Not Know About

Jun 13, 2018

AI-based retail services

Artificial intelligence has taken over the world incredibly fast. AI technology is being used across all industries today; thereby, reducing the dependency on human labor and minimizing the errors and delays made in operations. Artificial intelligence is a broad term that incorporates capabilities ranging from image recognition software to robotics. The maturity level of each of these technologies differs from one another. But the catch here is that introducing any advanced technology into an industry comes with its own set of challenges. Artificial intelligence problems are often overshadowed by their numerous benefits; however, these challenges cannot be completely ignored. It is always better for companies to think of the flip side of technology to understand the gaps and challenges involved. 

Speak with our analytics experts to know more about the impact of artificial intelligence problems.

Key Artificial Intelligence Problems

Varying Development Approach

One of the most prominent artificial intelligence problems is that of the development approach. The development phase is quite different in the case of artificial intelligence. Most of the time, developments in AI technology are all about identifying data sources and then gathering content, cleansing it, and then curating it. Such an approach requires different skills and mindsets, as well as different methodologies. In addition, AI-powered intellectual systems must be trained in a particular domain.

Highly Dependent on Data

Artificial intelligence heavily relies on data for learning. They depend on enormous amounts of high-quality data from which to observe trends and behavior patterns. Furthermore, AI systems quickly adapt to improve the accuracy of the conclusions derived from the analysis of that data. However, the massive amount of data required becomes one of the most challenging artificial intelligence problems for companies. Also, the datasets need to be highly representative and balanced, failing which, the system will eventually adopt bias that is contained in the data sets.

Experimental Nature

Next among the artificial intelligence problems is the difficulty in predicting the ROI and the improvements it may bring to a project. The outcomes of artificial intelligence are highly dependent on the data that has been fed into the system. It also requires a skilled team that can write or adapt to publicly available algorithms, select the right algorithm for the desired result, and combines algorithms as needed to optimize the result.

Request for a free proposal to learn how you can make use of artificial intelligence to transform your organization and cater to your strategic business and industry needs.

Threat to Privacy

Like in the case of most technology, a privacy breach is one of the major artificial intelligence problems. AI technology that recognizes speech and has the capability to decipher natural language will theoretically be able to understand each conversation that takes place on e-mails and telephones. This means that if the system gets hacked, the user’s data could get leaked easily. Also, any malfunction in the system could also result in the loss of an enormous amount of data, some of which cannot even be recovered.

Related Articles

Ready to Harness Game-Changing Insights?

Request a free solution pilot to know how we can help you derive intelligent, actionable insights from complex, unstructured data with minimum effort to drive competitive readiness, market excellence, and success.

Recent Blogs

Supply Chain Analytics and its Importance for Businesses

Supply Chain Analytics and its Importance for Businesses

Supply chains generate massive amounts of structured and unstructured data, which, when used efficiently, can enable organizations to gain intelligent, actionable insights. Traditional supply chains, that do not make use of data analytics are siloed and slow-moving,...

read more
Four Metrics in the Telecom Industry to Make Smart Decisions

Four Metrics in the Telecom Industry to Make Smart Decisions

What you can expect from the Telecom Analytics Metrics Article IntroductionTelecom Analytics Metrics Highlights of the Telecom Analytics Metrics Article S NoTelecom Analytics Metrics1.Average Revenue Per User (ARPU)2.Minutes of Usage (MOU)3.Churn Rate4.Subscriber...

read more

Industries

Our advanced analytics expertise spans across industries, sectors, and functions, which enables us to deliver robust, agile solutions to all our clients. These are our core competencies, formed through years of experience.

Insights

Our free resources shed light on our extensive expertise and equip you with information to accelerate decision-making, growth, and innovation.

Talk to us
Talk to us